If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-35x+12=0
a = 6; b = -35; c = +12;
Δ = b2-4ac
Δ = -352-4·6·12
Δ = 937
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{937}}{2*6}=\frac{35-\sqrt{937}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{937}}{2*6}=\frac{35+\sqrt{937}}{12} $
| 8x+2-4x-5=180 | | 24/6=(21+x)/x | | 24/6=21+x/x | | 8x+2+3x-5=180 | | 6^3x−5=39 | | 200x^2-800x-960=0 | | 2(4x-2)-6x+7=15 | | 2(4x-2)-6×+7=15 | | 16w-18w=10 | | 2(x-3=-2+2x | | 2(6x+2)=64 | | 16x+8x+10=2 | | 4x+5-2x=25 | | -3(3x+4)-3=-2(x+5)+5x | | 8(x-2)+5=13 | | -5(-1x+3)=-20 | | -9x-8x=-2(7+4x) | | 4x-8×3×=41 | | 3/4t+1=5/8+-2 | | 5x+6x+4=48 | | 3x+1=-4x-11 | | 10w+22=5w-13 | | 6x-6x+14=12 | | 6b-18=3b+27 | | 32-4a=4a | | 9.02+n=3.85 | | 20x-7=15x+3 | | 7y+24=10y | | 5y^-10y=15 | | 6w-7=13+2w | | 2x-4x/3-2=32 | | v-33=10 |